
Journal of Industrial Microbiology, 13 (1994) 382388 
�9 1994 Society for Industrial Microbiology 0169-4146/94/$09.00 
Published by The Macmillan Press Ltd 

Application of pattern recognition to monitoring fermentations of 
Bacillus amyloliquefaciens 

Susanne E. Keller, Diana S. Stewart and Steven M. Gendel 
National Center for Food Safety and Technology, US Food and Drug Administration, 6502 S. Archer Rd, Summit-Argo, IL 60501, USA 

(Received 30 March 1994; accepted 20 July 1994) 

Key words: Pattern recognition; Bacillus amyloliquefaciens; Characterization; Classification; Fermentation 

S U M M A R Y  

Pattern recognition techniques were applied to analytical data to distinguish abnormal from normal microbial fermentations using Bacillus amyloliquefaciens 
as a model system. Patterns of fermentation end products during growth of B. amyloliquefaciens were obtained from HPLC analysis of broth samples. Data were 
also obtained from fermentations using other bacterial species, strains, and environmental conditions, and were compared with the model data set. The bacterial 
species cultured included B. subtilus, B. licheniformis, and Escherichia coli. Environmental variables included aeration and temperature. The chromatographic 
patterns were compared by using hierarchical cluster and principal component analysis to obtain a quantitative measure of their similarity and to establish the 
normal variability within a model data set. Statistical analysis of the data indicated that individual fermentations can be assigned to distinct clusters on the basis 
of their divergence from the model system. Altered environments and other species can be identified as outliers from the model set. These results show that pattern 
recognition analysis has direct applicability to monitoring fermentation processes. 

INTRODUCTION 

In fermentation, the safety and quality of  the final product 

depend on the growth and purity of  microorganisms present. 

Traditionally, monitoring of  microbial fermentations has 
focused on individual parameters, such as oxygen consump- 
tion, pH, or the production of a product. Improper conditions 

that cause abnormal growth patterns can result in large 
changes in the rate of  product formation. Therefore, methods 

to monitor the growth of the microorganism and to provide an 
early indication of possible complications, such as contami- 
nation, can be critical in quality assurance and safety assess- 

ment and in maximizing profit. Unfortunately, all critical fac- 
tors involved in the growth of  a particular microorganism or 

in the production of  a particular metabolite may not be 
recognized. 

Statistical methods have been applied for pattern recog- 

nition to classify processes and predict the outcome of a fer- 
mentation [7,11]. Variables include factors such as oxygen 

consumption or product concentration. Information concerning 

metabolites or by-products other than the desired end product 
was not obtained. Generally, data on a particular fermentation 
may not be quantitatively analyzed during evaluation. Lack of 
evaluation can be attributed to the sheer volume of infor- 
mation, some of which may not be critical to the outcome of 
a fermentation. Complete analysis of all available information 

would require appropriate tools or methods to identify 
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important parameters and successfully predict fermentation 

results. The statistical methods used by Guthke and Rossman 

[7], and Saner and Stephanopoulos [11] could be applied to 

metabolic information as well as to discrete parameters to pre- 

dict fermentation outcome. Statistical treatment of  metabolic 

data produced during a fermentation may also reveal corre- 

lations previously unsuspected, such as those between a pre- 

cursor and a desired end product. Such information could later 

be applied to improve product yield. 

The use of  information on metabolic intermediates and by- 

products for monitoring microbial fermentation requires a 

quick and accurate means of  biochemical analysis, such as 

HPLC. In his work on identification of pathogenic Bacillus 

cereus, Zerfiridis [14] used HPLC to separate major extracellu- 

lar proteins produced during growth and speculated that the 

quantities and types of  the proteins might be useful as an 

identification or classification tool. Generally, protein profiles 

used to identify microorganisms have focused on intracellular 

proteins separated by gel electrophoresis [8]. 

HPLC elution patterns have not typically been used to 

establish a metabolic profile for identification or classification. 

Examination of elution patterns obtained from HPLC analysis 

can yield information about the status of  a fermentation in a 

rapid and reproducible manner. In this work, the end products 

produced during growth of  Bacillus amyloliquefaciens were 

analyzed by HPLC. The resulting elution patterns were used 

to create statistical models representing a desired ' ideal '  fer- 
mentation. The models were then used to identify fermen- 

tations arising from altered organism or culture conditions. 



MATERIALS AND METHODS 

B. amyloliquefaciens ATCC 23843, Escherichia coli ATCC 
15922, B. licheniformis ATCC 10716, and B. subtilus ATCC 
37015 cultures were obtained from the American Type Culture 
Collection (Rockville, MD, USA). B. amytoliquefaciens 1521 
was obtained from the Institute of Applied Microbiology 
(Tokyo, Japan). Frozen stock cultures were inoculated into 
brain heart infusion broth (BHI; Difco Laboratories, Detroit, 
MI, USA) and incubated overnight at 37 ~ After incubation 
the cultures were transferred at a 1% inoculum level to 100 ml 
BHI in 500-ml baffled flasks and incubated at 37 ~ with a 
shaker speed of 250 r.p.m. These parameters were the standard 
or control fermentation conditions. Environmental variations 
were simulated by altering shaker speed (100 and 400 r.p.m.), 
temperature (25 and 32 ~ and flask type (baffled vs non- 
baffled). Cultures were harvested when they reached approxi- 
mately 109 cells m1-1. The supernatant broths were passed 
through 0.2-/xm pore size filters (Gelman Sciences, Ann 
Arbor, MI, USA) before injection into the HPLC system. 

A Waters HPLC system (Milford, MA, USA) equipped 
with a Model 600E solvent delivery system, a Model 991 Pho- 
todiode Array Detector, and a Model 715 Ultra Wisp were 
used to analyze fermentation broths. The column used was a 
Waters Protein-Pak T M  DEAE 8HR. The solvent system was a 
convex gradient (38 rain) from an initial buffer of 20 mM Tris 
HC1 (Sigma Chemical Co., St Louis, M e ,  USA), pH 8.2, to a 
final buffer of 20 mM Tris HC1, pH 8.2, plus 0.75 M NaCI; 
flow rate, 1.56 ml rain -1. The effluent was monitored at wave- 
lengths of 200 to 350 nm. Absorbance data at 220 and 280 nm 
were extracted at 20-s intervals and imported to the statistical 
analysis software. 

Amylase activity in broths was measured by a modification 
of the procedure of Bezbaruah et al. [3]. The reaction mixture 
contained 0.1 ml culture broth, 0 .2ml H20, 0.2 ml sodium 
phosphate buffer (0.1 M, pH 7.0). The reaction was initiated 
by adding 0.5 ml of a 1% potato starch solution (Sigma). After 
5 rain at room temperature, the reaction was stopped with 
0.5 ml 1 N HC1. A 0.1-ml aliquot was transferred to a clean 
tube, 0.05 ml Lugol 's solution and 0.05 ml 1 N HC1 were 
added, and the volume was adjusted to 7.5 ml. The absorbance 
was measured at 610 nm. One unit (U) was defined as the 
amount of enzyme required to decrease the absorbance by 0.05 
in 1 min at room temperature. 

Data from HPLC profiles were analyzed by hierarchical 
cluster analysis (HCA), principal component analysis (PCA), 
and models developed by Soft Independent Modeling of Class 
Analogy (SIMCA) using Pirouette (Infometrix, Inc., Seattle, 
WA, USA), a multivariate data analysis software program. 
Data were preprocessed by autoscaling (data were mean-cent- 
ered and then variance-scaled). S1MCA modeling and predic- 
tion were performed at the 95% confidence level. 

RESULTS AND DISCUSSION 

The typical HPLC elution pattern obtained from the stan- 
dard fermentation broths had approximately 15-20 peaks (Fig. 
1). Peaks on chromatographs from different fermentation 
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Fig. 1. HPLC elution pattern from fermentation broths. Typical elu- 
tion patterns from three B. amyloliquefaciens 1521 fermentation 
broths are shown overlayed with the elution pattern of a control BHI 

broth (dark line). 

broths could be identified as the same on the basis of their 
UV spectra and elntion time. Some peaks from standard fer- 
mentation broths were also found in chromatographs of unused 
BHI media and were clearly related to the fermentation 
medium. Variations in peak size were observed visually; exact 
determination of the variability of each peak would require 
each peak of a chromatograph to be quantified and evaluated 
statistically. Evaluation of an individual chromatograph based 
on its overall similarity to others of previous fermentation 
broths, therefore, would be very difficult. Thus, to acertain 
whether a relationship existed between chromatograph pat- 
terns, all data were explored by the HCA algorithms in the 
Pirouette program. 

Historically, there is a precedent for using HCA to classify 
microorganisms and examine fermentation products [5]. HCA 
is used extensively in numerical taxonomy, which is based 
largely on biochemical tests of microorganisms. These bio- 
chemical tests often measure or identify metabolites, e.g. the 
production of urease, expressed during the growth of an organ- 
ism in a specific environment. Test results are combined and 
evaluated to determine taxonomic placement of a microorgan- 
ism. The use of HPLC profiles of fermentation broths to class- 
ify microorganisms is based on one test: growth in a specific 
environment. The growth is described by the entire profile of 
biochemical compounds found. This classification procedure 
could be described as a series of biochemical changes charac- 
teristic of a particular bacterial species. The characteristic pro- 
file should be different for highly dissimilar species but similar 
for those closely related. 

Fig. 2 shows the results of HCA of vectors from 40-min 
HPLC profiles of fermentation broths of bacteria grown under 
standard conditions. The HPLC profiles were obtained at 
280 nm using 10-s intervals. HCA was performed by using an 
incremental link method (a centroidal clustering technique), 
which is described in the Pirouette software manual and uses 
a sum of squares approach to calculate the nearest cluster. The 
incremental link method is recommended when two classes or 
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Fig. 2. Dendrogram of HPLC profiles from fermentation broths. B. 
amyloliquefaciens strains are designated as 23843 and 1521. Other 
designations are by ATCC number: 15922, E. coli, 10716, B. lichen# 
formis, and 37015, B. subtilus. An uninoculated broth is designated 
BHI. All cultures were grown under the standard conditions. The dis- 

tance scale is from 1.0 (identical) to 0.0 (no similarity). 

clusters are not well separated, e.g. when strains of microor- 
ganisms are closely related. B. amyloliquefaciens strains 1521 
and 23843 are closely related, whereas other Bacillus strains 
are less closely related, and E. coli is unrelated. Although 
some overlap of the broth samples occurred between B. amylo- 
liquefaciens strains 1521 and 23843, both were clearly differ- 
entiated from other Bacillus strains, E. coli, and the sterile 
broth control (Fig. 2). The other Bacillus strains, E. coli, and 
the sterile broth control all comprised a separate node with no 
similarity to the B. amyloliquefaciens strains (1.0 represents 
complete similarity and 0.0 represents no similarity). The two 
nodes containing the two B. amyloliquefaciens strains were 
more dissimilar than one might expect, considering the 
relationship of the strains. Nonetheless, these results indicate 
that classification of a microorganism as to its relationship 
with other species is possible based on a single HPLC chroma- 
tograph elution profile. 

Results of HCA from altered growth condition experiments 
for the two B. amyloliquefaciens strains are shown in Figs 3 
and 4. Again, an incremental link method was used because 
the data were expected to reflect close groupings. Controls 
(designated C) from both strains tended to cluster together in 
the dendrograms. Overlap between altered conditions and stan- 
dard conditions did occur; however, since all test samples were 
of the same species, this was not unexpected. Shaker speed 
(aeration) had a greater influence on growth products of the 
organisms than did temperature. For strain 23843, the higher 
shaker speed fermentations appeared to be more dissimilar. 
For strain 1521, a lower shaker speed was just as influential 
as a higher speed. This type of classification allows some vis- 
ualization of fermentation similarity; however, it does not 
classify them as 'good' or 'bad'  but only as different. Because 
the dendrogram distance scale is defined by the most dissimilar 
test sample used, the separation may be exaggerated when all 
test samples are related. However, since clustering occurred 
within the standard conditions, a model could be created to 
describe an ideal and expected variation. Such a model could 
be used to identify nonconforming fermentations. In a quality 
control program, this would not identify the cause of a parti- 
cular deviation, but could flag nonconforming fermentations 
for closer evaluation. 

B. amyloliquefaciens strains are often used to produce amy- 
lase. In this work, amylase activity was measured in all fer- 
mentation broths used for classification of test samples by 
HCA and PCA, and was used later for correlation with HPLC 
profile models. Such correlation would allow for classification 
or identification of high amylase-producing fermentations. The 
fermentation broths contained from 0 to 25 U ml ~ amylase 
activity. Generally, cultures grown under standard conditions 
produced higher levels of amylase than did those grown under 
altered conditions. In addition, under the culture conditions 
used, no amylase was found in cultures of strains other than 
B. amyloliquefaciens. Three classes were defined on the basis 
of U m1-1 amylase: low (0--5); medium (5-10); high (>10). 

Because clustering occurred within the data sets derived 
from the HPLC profiles (Figs 2-4), the data were further ana- 
lyzed using PCA to develop SIMCA models to predict amyl- 
ase production. The advantage of PCA is the ability to trans- 
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Fig. 3. Dendrogram of HPLC profiles from B. amyloliquefaciens 1521 grown under different temperatures and shaker speeds. A, 37 ~ 100 
r.p.m.; B, 32 ~ 100 r.p.m.; C, 37 ~ 250 r.p.m. (standard condition); D, 32 ~ 250 r.p.m.; E, 37 ~ 400 r.p.m.; F, 32 ~ 400 r.p.m. The 

distance scale is from 1.0 (identical) to 0.0 (no similarity). 
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form the data to reduce the amount of irrelevant information 
and identify relevant information. This approach is important 
in pattern recognition techniques. Pattern recognition has 
recently been used to classify mycobacteria on the basis of 
similarities in HPLC chromatographic elution patterns [4]. 
Similar techniques have been used to determine microbial con- 
tamination during fermentation. Elmroth et al. [6] used a series 
of chromatographic methods measuring fatty acids, amino 
acids, and carbohydrates to determine the presence of contami- 
nating organisms in cultures of Leuconostoc mesenteroides. In 
the food industry, pattern recognition had been used success- 
fully to classify a variety of food products, including wines, 
cheeses, and soy sauce [1,2,8,9,12]. These products were all 
identified by the pattern of biochemical compounds created by 
microorganisms during fermentation. Pattern analysis can also 
lead to the identification of important determinants of appro- 
priate fermentation, e.g. cheddar cheese classification [10]. 

SIMCA models were developed for both B. amyloliquefaci- 
ens 1521 and 23843 based on levels of amylase activity found 
in the fermentation broth under various culture conditions. For 
the models, data at 280 nm were used and autoscaled before 
analysis. In a SIMCA model, a principal component model is 
created for each class. Cultures of unknown identity are then 
compared with the principal components for each class within 
the model. Three outcomes are possible in the test of an 
unknown with a SIMCA model: 1) the unknown falls into a 
pre-defined class; 2) the unknown will not fit into any class; 
3) the unknown will fit more than one class. Confidence limits 
can be established for the outcome because the class decisions 
are based on statistical tests. Confidence limits were set at 
95%. Results for the two strains are shown in Tables 1 and 2. 
Table 1 shows the distance between classes and gives an indi- 
cation of the ability of the model to separate classes. The dis- 
tance is another way to quantify class separation and is calcu- 
lated based on the residuals between the classes. This 
calculation is described in the Pirouette software manual. A 
small value for between-class distance can indicate poor separ- 

TABLE 1 

Distance between classes as determined by models based on B. amylo- 
liquefaciens 

Class* Low Medium High 
(U ml -~) (U m1-1) (U rill -z) 

B. amyloliquefaciens 1521 
Low 0 1.38 6.88 
Medium 0 3.16 
High ,~ 0 

B. amyloliquefaciens 23843 
Low 0 5.19 6.94 
Medium 0 0.67 
High 0 

*Classes are based on amylase activity (U ml-1): low = 0-5; medium 
= 5-10; high = >10. SIMCA models were created by using HPLC 
profiles from one strain only. 

TABLE 2 

Summary of prediction results* 

Model B.A. 1521 B.A. 23843 Overall 

B.A. 1521 97.8 44.4 78.6 
B.A. 23843 21.7 84.4 79.6 

*Percentage of correct identification for all test samples was based on 
amylase activity models. B.A. = Bacillus amyloliquefaciens. Overall = 
correct identification in low, medium, high, or no-fit classes of all test 
samples used (98 total). 

ation between classes. For the model based on strain 152l, all 
the classes appeared well separated. With the model based on 
23843, little difference was observed between medium and 
high amylase producers. Use of this model for the 23843 strain 
would not clearly differentiate all three classes, but may still 
enable correct identification of poor amylase producers. 

Table 2 gives results of amylase class predictions for broth 
samples made with the B. amyloliquefaciens. Both models 
were partially successful in correctly classifying fermentation 
broth test samples from closely related strains. When the 
model based on strain 1521 was used to predict performance 
of strain 23843, the prediction matched the actual activity level 
only 44.4% of the time. When the model based on 23843 was 
used to predict amylase levels in strain 1521, the test samples 
were correctly identified only 21.7% of the time. In most cases 
where classes were misidentified, the incorrect class was either 
a lower amylase level or a no-fit designation. Both models 
correctly designated a no-fit category for all HPLC profiles 
from other Bacillus strains and E. coli (data not shown). As 
a result, the models gave an overall incorrect identification 
approximately 20% of the time. 

CONCLUSION 

Pattern recognition techniques were used to distinguish nor- 
mal and abnormal fermentation patterns of B. amyloliquefaci- 
ens. Both PCA and HCA enabled the classifcation of fermen- 
tation broth test samples on the basis of their HPLC profiles. 
Test samples were classified by strain differences (as shown by 
HPLC profiles of fermentation broth) and growth conditions. 
Models were then developed using SIMCA methods. The 
SIMCA model was first described by Wold in 1974 [13] and 
is included with enhancements in the commercially available 
Pirouette software package. This method was chosen for the 
classification of the B. amyloliquefaciens fermentation broths 
because it allows a designation of 'no fit' for divergent test 
samples that do not match any predefined class. During actual 
fermentations with B. amyloliquefaciens, an abnormal fermen- 
tation may diverge for a variety of reasons. Not all abnormal 
fermentations will have patterns already included in various 
models available. To be useful in a monitoring program for 
fermentation, a modeling system must be flexible enough to 
accommodate new conditions and patterns. This method was 
less useful for identifying closely related fermentations such as 
those that might be obtained when a new strain is introduced to 
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improve yields in a commercial operation. Nonetheless, the 
success of this method indicates that pattern recognition may 
be useful in monitoring the progress of a fermentation process, 
particularly if included in an overall quality control strategy. 
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